Hilbert Space Structures on the Solution Space of Klein-Gordon Type Evolution Equations

نویسنده

  • Ali Mostafazadeh
چکیده

We use the theory of pseudo-Hermitian operators to address the problem of the construction and classification of positive-definite invariant inner-products on the space of solutions of a Klein-Gordon type evolution equation. This involves dealing with the peculiarities of formulating a unitary quantum dynamics in a Hilbert space with a timedependent inner product. We apply our general results to obtain possible Hilbert space structures on the solution space of the equation of motion for a classical simple harmonic oscillator, a free Klein-Gordon equation, and the Wheeler-DeWitt equation for the FRW-massive-real-scalar-field models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability Interpretation for Klein-Gordon Fields and the Hilbert Space Problem in Quantum Cosmology

We give an explicit construction of a positive-definite invariant inner-product for the Klein-Gordon fields, thus solving the old problem of the probability interpretation of Klein-Gordon fields without having to restrict to the subspaces of the positivefrequency solutions. Our method has a much wider domain of application and may be used to obtain the most general invariant inner-product on th...

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

The Existance of the Optimum Solution for the System of Differential Equation in Hilbert Space

In this paper, we study the existence of the following optimum solution for the system of differential equation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002